

Chair of Sustainable Electric Networks and Sources of Energy (SENSE)

Decentralized Energy Systems in Germany: Development and Research

Maren Kuschke, TU Berlin Prof. Kai Strunz, TU Berlin

2011 APEC Workshop on Addressing Challenges in AMI Deployment and Smart Grids in APEC

> 25 August 2011 Taipei

Outline

- 1. Introduction
- 2. Current Power System Structure in Germany Overview, development of renewable energies, grid operators
- 3. Future Power System Structure in Germany Political goals, Smart Grids in Germany
- 4. Examples of Dezentralized Energy Sources in Germany *E-Mobility, Cogeneration*
- 5. Summary Power System Germany
- 6. Research Example: Tidal Energy Conversion Systems *Tidal current characteristics, technology, grid connection*

Sustainable Electric Networks and Sources of Energy www.sense.tu-berlin.de

1. Introduction

- Decentralized Energy Sources in Germany

• Germany has a long history and experience in the field of decentralized energy sources

- Legal framework for systematic development of decentralized energy structures is formulated in the German Renewable Energy Act (EEG)
- This framework follows a feed-in tariff based approach, which guarantees certain compensation to plant owners
- The German concept is being continuously improved and adapted by new developments such as Smart Grids or E-Mobility
- It has served as exemplary guidance for numerous countries

Sustainable Electric Networks and Sources of Energy www.sense.tu-berlin.de

- Overview

Consumption	522 TWh (2007)	
Installed capacity share (2007)	Total installed capacity: 137.5 GW	
Energy production share (2008)	Mostly: lignite (23.5 %) nuclear (23.3 %) hard coal (20.1 %) natural gas (13 %)	
Share of renewables in production (2008)	Mostly: wind power (6.5 %) biomass (3.7 %) hydro power (3.4 %) photovoltaic (0.7 %)	

Development of Electricity Generation from Renewable Energy Sources in Germany 1990 - 2009

- Installed Renewables at Different Voltage Levels 2007

2. Current Power System Structure in Germany – Grid Operators TSOs have commercial interest TenneT Transmission теппет Grid Amprion transpower 50Hertz Transmission **Operators** VATTENFALL 色 50HZRTZ EnBW Transportnetze RWE **Regional and** Around 60 regional and more Local Grid than 700 local distribution companies Operators EnBW European Energy Exchange (EEX) market **Market Place** Trading outside the market possible Sustainable Electric Networks and Sources of Energy SENSE 25 August 2011 7 www.sense.tu-berlin.de

1. Introduction

- 2. Current Power System Structure in Germany Overview, development of renewable energies, grid operators
- 3. Future Power System Structure in Germany Political goals, Smart Grids in Germany
- 4. Examples of Dezentralized Energy Sources in Germany *E-Mobility, cogeneration*
- 5. Summary Power System Germany
- 6. Research Example: Tidal Energy Conversion Systems *Tidal current resource, technology, system structure, analysis*

3. Future Power System Structure in Germany – Political Goals

- The aim of the Federal government is to systematically achieve a modern, climate-friendly, sustainable and secure energy supply
- It has stated the following legally binding goals for future energy supply:

• The most powerful governmental tool to systematically promote these goals is the German Renewable Energy Act (EEG)

- Incentives for Decentralized Storage

- Up to now, there is no specific instrument to promote decentralized storage in Germany
- The last amendment of the EEG included a special feed-in tariff for photovoltaic installations with a certain amount of self consumed energy
- This could be seen as a first attempt to promote decentralized storage

 As a consequence, first solutions of combined photovoltaic/storage installations are on the market

 But future amendments of EEG are likely to offer explicit promotions for decentralized energy sources combined with storage

– Smart Grids in Germany

- E-Energy Smart Grids made in Germany is a major funding project initiated by the Federal Ministry of Economics and Technology (BMWi) in line with the German Federal Government's technology policy
- A technology competition identified six model regions to carry out research and development activities with support from two ministries
- Project duration is four years until October 2012

Source: www.e-energy.de

Sustainable Electric Networks and Sources of Energy www.sense.tu-berlin.de

SENSE

- Smart Grids in Germany

2

3. Future Power System Structure in Germany			
- Smart Grids in Germany Source: www.e-energy.de			
Project	Objectives	Concept	
eTelligence	 Market place installation Definition of products, access conditions, trade mechanisms Intelligent system integration 	 Regional marker rural area with I and high rate of Bulk consumer 	t place in ess suppliers renewables integration
E-DeMa	 Increase of energy efficiency Active participation of user at energy market Integrated data- & energy network 	 Rural & city are different distribute Connection of provide ICT-gateware electronic energy 	as with two ution grids private users ys to open gy market
MeRegio	 Real & virtual connection of loads, generators & storage devices Build-up of grid simulator Market platform for new products Optimization of CO₂ emission 	 Rural & city are Smart Grid instance private&busines Smart meter, op control, thermal 	as allation for as customers peration storage
SENSE Sustainabl	e Electric N etworks and S ources of Energy www.sense.tu-berlin.de	25 August 2011	13

ns

3. Future Power System Structure in Germany			
- Smart Grids in Germany Source: www.e-energy.de			
Project	Objectives	Concept	
Modellstadt Mannheim	 ICT for grid and buildings Service-oriented & realtime architecture for user connection Use of power line for communication 	 Cities Mannheim, Dresden Market connection of 1000 users with controllable loads & demand-oriented tariffs and decentralized generators 	
RegModHarz	 Build-up of power grid control center for VPP Harz Commercialisation of VPP Grid monitoring & system service 	 Rural area VPP of renewables, controllable loads, storage for proof of reliable energy supply 	
Smart Watts	 Information system & control model Demonstration with private homes 	 Private homes Modular smart meters further developed as control station Demand side management 	
SENSE Sustainabl	e Electric Networks and Sources of Energy www.sense.tu-berlin.de	25 August 2011 14	

- Smart Grids in Germany: eTelligence Project

City of Cuxhaven

Wind turbinePhotovoltaic

- Cuxhaven is situated at estuary of river Elbe flowing into North Sea
- Around 52,000 inhabitants, 3 million tourists overnight
- 50 % of electricity demand is covered by renewable energy sources
- Has an important fishing harbor

Sustainable Electric Networks and Sources of Energy www.sense.tu-berlin.de

25 August 2011

Source: www.e-energy.de

- Smart Grids in Germany: eTelligence Project

- 650 private homes participate in Smart Grid test for one year
- Virtual Power Plant concept including fishing industry with its refrigerated warehouses, two large swimming pools with heat power cogeneration systems, wind turbines and photovoltaic
- Range of temperature in cooling process is used
- At wind energy peak fish in refrigerated warehouse is cooled more, peak load is shaved by cutting back on refrigeration
- Considering the heat as an inert system and using the swimming pools as storage units

1. Introduction

- 2. Current Power System Structure in Germany Overview, development of renewable energies, grid operators
- 3. Future Power System Structure in Germany Political goals, Smart Grids in Germany
- 4. Examples of Dezentralized Energy Sources in Germany *E-Mobility, cogeneration*
- 5. Summary Power System Germany
- 6. Research Example: Tidal Energy Conversion Systems *Tidal current resource, technology, system structure, analysis*

– E-Mobility and Smart Grids

- In Germany, energy and automotive industries are important pillars of the economy
- The intersection of energy and automotive sectors and the Smart Grid potential given by electric mobility is followed with great interest
- There are several ongoing field tests and research projects
- TU Berlin and SENSE are at the heart of many these processes
- SENSE hosts the following E-Mobility and Smart Grid research projects:
 - Mobile Energy Resources for Grids of Electricity (MERGE) is a major European Union project
 - Electro-Mobile Energy Resources in Grids of Electricity (E-MERGE) Laboratory

Sustainable Electric Networks and Sources of Energy www.sense.tu-berlin.de

4. Examples of Decentralized Energy Sources in Germany – E-Mobility Field Tests

There are three major electric vehicle (EV) field tests going on in Germany:

Source: http://evworld.com

SENSE

Mini E

Source: http://www.hybridcars.com

Smart ED

Source: http://www.eon.com

VW Golf TwinDrive

- Mini E Berlin: Pure electric vehicle
- e-mobility Berlin: Pure electric vehicle
- VW Golf TwinDrive: Plug-in hybrid electric vehicle (PHEV)

Sustainable Electric Networks and Sources of Energy www.sense.tu-berlin.de

- E-Mobility Field Tests: Comparison

	Mini E Berlin	e-mobility Berlin	VW GOLF TwinDrive
Industry participants	BMW, Vattenfall Europe AG	Daimler, RWE	VW, E.ON, GAIA, Evonik, LiTech
Period	2009 - 2010	2009 - 2010	2008 - 2012
Location	Berlin	Berlin	Berlin, Wolfsburg
Number of EVs	50	100	20
Battery capacity	35.0 kWh	16.5 kWh	12.0 kWh
Battery type	Li-ion	Li-ion	Li-ion
Distance	250 km	135 km	50 km
Battery weight	300 kg	136 kg	160 kg
WW	/w.sense.tu-berlin.de	20 Au	gust 2011 21

4. Examples of Decentralized Energy Sources in Germany – E-Mobility Research Projects: MERGE

- MERGE: Mobile Energy Resources in Grids of Electricity
- Partners: see map
- Project coordinator:
 Prof. Nikos Hatziargyriou

- E-Mobility Research Projects: MERGE

- MERGE offers novel methods of grid integration where electric vehicles are treated as valuable mobile energy resources
- Most suitable interactions between key actors were identified
- Interactions of MERGE are distinguished through extension of two known concepts from stationary to mobile resources:
 - Microgrid
 - Virtual Power Plant
- More information available at www.ev-merge.eu

- E-Mobility Research Projects: E-MERGE

- E-MERGE: Electro-Mobile Energy Resources for Grids of Electricity
- Partner: German Federal Ministry of Economics and Technology (BMWi)
- Complementary to e-mobility field tests
- Realization of physical microgrid with integrated e-mobility in 2011 at TU Berlin
- Research on security and stability

Cogeneration

- Thermal and electrical power rates of cogeneration plants can range from a few kW to several hundreds of MW
- Since 2000, more and more so called mini- and micro-cogeneration plants are on the market

 Cogeneration plants can achieve high efficiencies of up to 80 %

- In Germany, cogeneration is promoted via following legal frameworks:
 - CHP Act (KWKG)
 - German Renewable Energy Act (EEG) if fuel used in cogeneration is biomass

5. Summary German Power System

- Germany has a long tradition and experience with decentralized renewable energy
- The first governmental programs to promote decentralized energy sources date from the 1990s
- Currently, the German Renewable Energy Act (EEG) is in place
- There is a strong systematic movement to standardize and implement Smart Grid related methodologies

1. > 2. > 3. > 4. > 5. > 6.

1. Introduction

- 2. Current Power System Structure in Germany Overview, development of renewable energies, grid operators
- 3. Future Power System Structure in Germany Political goals, Smart Grids in Germany
- 4. Examples of Dezentralized Energy Sources in Germany *E-Mobility, cogeneration*
- 5. Summary Power System Germany
- 6. Research Example: Tidal Energy Conversion Systems Tidal current resource, technology, system structure, analysis

6. Research Example: Tidal Energy Conversion Systems

- Tidal Current Resource

- According to European Ocean Energy Association (EU-OEA), European ocean energy potential is 15 % of Europe's electricity demand
- Tidal current resource distribution in Europe:

6. Research Example: Energy Conversion Systems

- Tidal Current Resource

- Tidal energy conversion systems exploit kinetic energy of sea currents
- Tides follow a sinusoidal shape
- Ebb and flood occur twice during a lunar day of about 25 hours
- Also, a 14-days cycle exists with spring tides (maximum) and neap tides (minimum)

• Measured at Station Wick, UK:

6. Research Example: Tidal Energy Conversion Systems

- Technology

- Horizontal axis turbines are predominant
- Blade length up to 15 m for tidal turbines in the MW-range
- Blades much smaller than for wind turbines due to high water density
- Duct may concentrate the flow towards the rotor
- Examples from Europe:

Source: www.openhydro.com

Source: www.marineturbines.com

Source: www.lunarenergy.co.uk

Sustainable Electric Networks and Sources of Energy www.sense.tu-berlin.de

- Our research has centered on AC power transmission to shore
- Idea is here to put generator side converter on the shore instead of under water

Sustainable Electric Networks and Sources of Energy www.sense.tu-berlin.de

- Direct connection of permanent magnet synchronous generator (PMSG) to generator side converter → no gearbox
- High-frequency switching occurs at generator side converter
- Challenge as traveling waves on cable may cause overvoltage at PMSG
- Pulse rising time t_r at converter and traveling time over cable t_t are the influencing parameters

6. Research Example: Tidal Energy Conversion Systems – Analysis Setup

• In order to analyze traveling waves, the following setup is considered

- Generator behaves close to open circuit, converter similar to short circuit
 ⇒ Reflection coefficients: Γ_{con} = -1 and Γ_{gen} = 1
- Waves need traveling time t_t to move from one to the other end of cable
- Test function is a ramp with $t_r = t_t/2$ applied at location x = 0

$$E \xrightarrow{v (t, \mathbf{x} = \mathbf{0})}_{0 \ t_r \ t_t} \xrightarrow{t (\mu s)}$$

6. Research Example: Tidal Energy Conversion Systems

- Cable Voltage Profile

7. $v (t = 7t_t/2, x)$ E 0 \leftarrow

I/2

SENSE

- 5. Back traveling wave is reflected with negative sign, then moving forward again
- 6. Forward traveling wave reaches generator again, reducing voltage
- 7. Pulse ramp fully back reflected for second time

Sustainable Electric Networks and Sources of Energy www.sense.tu-berlin.de

X

6. Research Example: Tidal Energy Conversion Systems – Overvoltage Equation

• Based on analysis, the following equations for the voltage at the generator terminals x = I at time $t = t_r + t_t$ were developed:

t _r range	$v(t_r+t_t,l)$
$t_{\rm r} \in [0, 2t_{\rm t}]$	2 <i>E</i>
$t_{\rm r} \in [2t_{\rm t}, 4t_{\rm t}]$	$4E\frac{t_{\rm t}}{t_{\rm r}}$

• Then, an equation for resulting per unit overvoltage at the generator terminals is obtained as:

$$\Delta V_{\text{max}} = 4 \frac{t_{\text{t}}}{t_{\text{r}}} - 1 \qquad \text{for example, if } t_{\text{r}} = 3t_{\text{t}}, \text{ overvoltage is 33\%}$$

• t_r can for example be adjusted by filter, therefore the research result has an important practical value

Sustainable Electric Networks and Sources of Energy www.sense.tu-berlin.de

SENSE

THANK YOU!

maren.kuschke@ieee.org

Sustainable Electric Networks and Sources of Energy www.sense.tu-berlin.de

Name	Maren Kuschke	Photo	
Title	DiplIng.	A	
Postal Address	Technische Universität Berlin Einsteinufer 11 (EMH-1) 10587 Berlin, Germany	(25)	
Telephone	Tel: ++49 30 314 26837		
	Cell:		
FAX	++49 30 314 28556		
Email	maren.kuschke@ieee.org		
Website	www.sense.tu-berlin.de		
Educational	Study: electrical engineering at Berlin University of Technology, Germany (TU		
Background	Berlin) and Royal Institute of Technology Stockholm, Sweden		
	2008, DiplIng. (Master) degree from TU Berlin		
	expected in 2011, PhD degree from TU Berlin		
Working	2007, ABB Corporate Research in Västerås, Sweden		
experience	• Since 2009, Research Assistant at TU Berlin, involved in projects concerning		
	grid integration of renewable energies in Germany		
	• Since 2010, IEEE PES Co-worker for internet platform "PES-Careers Global"		
	• 2010 and 2011, member in the VDE (German Association of Electrical,		
	Electronic & Information Technologies) Task Force Infrastructure and		
	Co-author of the VDE Report "Power Transmission for Climate Protection" (in		
	German)		
Autobiography	Awards: For her outstanding study performance Maren K	(usebly received the VDI Augerd	
	For her outstanding study performance Maren Kuschke received the VDI Award		
	Trom the Association of German Engineers in 2009. Furthermore, she received the		
	Research Interactor		
	Research is concerned with grid integration of ronowable operation, concerned		
	tidal energy conversion systems and power and	control. Her work is supported by	
	the nonprofit Reiner-Lemoine-foundation established by the founder of the		
	German photovoltaics company Solon.		